
Inverse Matrices, and Determinants August 30, 2017

ME 501A – Seminar in Engineering Analysis Page 1

Matrix Multiplication, Inverse 
Matrices, and Determinants

Larry Caretto
Mechanical Engineering 501A

Seminar in Engineering 
Analysis

August 30, 2017

2

Overview
• Review last lecture

– Background for matrix multiplication
– General rule and examples of matrix 

multiplication

• Definition, computation and use of 
determinants

• Use of determinants in computing 
matrix inverses

• Example problems
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Review last lecture
• Vector has a 

magnitude and 
a direction
– Can represent 

by components 

f1

f2

f

x1

x2

• f∙dx = |f||dx|cos()

• f = f1i + f2 j+ f3k or f = [f1  f2  f3] 
• Unit vectors i = [1   0   0], j = [0   1   0], k = 

[0   0   1] in x, y, z directions
• Dot product: f∙dx = f1dx1 + f2dx2 + f3dx3
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Review Matrix Basics

• Array of 
numbers with 
n rows and m 
columns

• Components 
are a(row)(column)



























nmnnn

m

m

m

aaaa

aaaa

aaaa

aaaa













321

3333231

2232221

1131211

A

• Size of matrix (n x m) is number of rows 
and columns

• Square matrix: m = n
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Review Diagonal Matrix

• The diagonal matrix 
A is a square 
matrix with nonzero 
components only 
on the principal 
diagonal
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• Components of A are 
aiij, where ij is the 
Kroenecker delta 
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Review Matrix Operations
• Can add or subtract matrices if they are 

the same size
– C = A  B only valid if A, B, and C have 

the same size (rows and columns)
– Components of C, cij = aij  bij

• Multiplication by a scalar: C = xA
– C and A have the same size (rows and 

columns)
– Components of C = xA, cij = xaij
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Review Null (0)/Unit (I) Matrices
• For any matrix, A, A + 0 = 0 + A = A; IA

= AI = A and 0 A = A 0 = 0
• The unit (or identity) matrix is a square 

matrix; the null matrix need not be 
square
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Unit and Null Matrix sizes
• Given that A is an (n x m) matrix

• The I in IA = A is (n x n)

• The I in AI = A is (m x m)

• The 0 in 0 + A = A or A + 0 = A is (n x m)

• The 0 in A0 is (m x arbitrary size)
– The product A0 is also a zero matrix 

whose size is (n x null matrix columns)

• The 0 in 0A is (arbitrary size x n)
– The product 0A is also a zero matrix 

whose size is (null matrix rows x m)
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Review Matrix Transpose
• Transpose of A denoted as AT (or A’)

• Reverse rows and columns; for B = AT

– bij = aji

– If A is (n x m), B = AT is (m by n)
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Review Row/Column Vectors

• Matrices with only one row or only one 
column are called row or column vectors 
(or matrices)
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c
• Single subscript is usual 

notation, but implied “1” 
for single row or column
is important for two-subscript formulas
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Review Multiplying Matrices
• For matrix multiplication, C = AB

– A has n rows and p columns
– B has p rows and m columns
– C has n rows and m columns ),1;,1(

1

mjni

bac
p

k
kjikij






• For C = AB, we get cij by adding prod-
ucts of terms in row i of A (left matrix) by 
terms in column j of B (right matrix)

• cij = ai1b1j + ai2b2j + ai3b3j + ai4b4j + …
• In general, AB ≠ BA
• “Premultiply” by matrix on left and “post-

multiply” by matrix on right
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Matrix Multiplication Example
• For matrix multiplication, C = AB

– A has n rows and p columns
– B has p rows and m columns
– C has n rows and m columns ),1;,1(

1

mjni

bac
p

k
kjikij
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• Example

• Can we find BA? What is its size? 3 x 3
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Matrix Multiplication Exercise
• Consider the following matrices

• Can you find AB, BA, neither or both?

• We can find AB, because A has three 
columns and B has three rows

• We cannot find BA because B has four 
columns and A has three rows
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Matrix Multiplication Exercise II
• What is the size of C = AB?

• C = AB has three rows (like A) and four 
columns (like B)

• What is c11?

• c11 = (1)(0) + (2)(1) + (3)(2) = 8
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Matrix Multiplication Exercise III
• Find c11, c12, c13, and c14 in C = AB

• c11 = (1)(0) + (2)(1) + (3)(2) = 8

• c12 = (1)(2) + (2)(3) + (3)(1) = 11

• c13 = (1)(-2) + (2)(1) + (3)(-3) = -9

• c14 = (1)(0) + (2)(0) + (3)(1) = 3
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Matrix Multiplication Exercise IV
• Find c21, c22, c23, and c24 in C = AB

• c21 = (0)(0) + (-1)(1) + (4)(2) = 7

• c22 = (0)(2) + (-1)(3) + (4)(1) = 1

• c23 = (0)(-2) + (-1)(1) + (4)(-3) = -13

• c24 = (0)(0) + (-1)(0) + (4)(1) = 4
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Matrix Multiplication Exercise V
• Find c31, c32, c33, and c34 in C = AB

• c31 = (1)(0) + (1)(1) + (0)(2) = 1

• c32 = (1)(2) + (1)(3) + (0)(1) = 5

• c33 = (1)(-2) + (1)(1) + (0)(-3) = -1

• c34 = (1)(0) + (1)(0) + (0)(1) = 0
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Matrix Multiplication Exercise VI
• Solution for matrix product C = AB
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Coordinate transformations
• Recall previous equations
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• Define matrices so that y = Ax and z = By
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Coordinate transformations II
• Show that matrix definitions give 

transformation results
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Coordinate Transformations III
• From matrix equations y = Ax and z =

By, we have z = BAx = Cx with C = BA
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Determinants
• Looks like a matrix but isn’t a matrix
• A square array of numbers with a rule 

for computing a single value for the 
array
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Example at 
right shows 
calculation of 
Det(A), the 
determinant of 
3 x 3 matrix A

• Looks like a matrix but isn’t a matrix
• A square array of numbers with a rule 

for computing a single value for the 
array
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General Determinant
• The value of an n by n determinant is 

found by taking a sum of n! terms

• Each term in the sum has 
– a product of n determinant elements, aij

– an element from each row and an element 
from each column: a1a2a3a4…

• Subscripts … are a permutation of 1234…

• Terms are positive or negative if the 
subscript permutation is even or odd

• Practical calculation formulas follow
24

More Determinants
• Useful in obtaining algebraic 

expressions for matrix operations, but 
not useful for numerical computation
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• An n x n determinant has n2 Minors, Mij, 
obtained by deleting row i and column j

• Cofactors, Cij = (-1)i+jMij used in general 
expressions for determinants 
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General Rule for Determinants
• Any size determinant can be evaluated 

by any of the following equations

• Can pick any row or any column
• Choose row or column with most zeros to 

simplify calculations
• Can apply equation recursively; evaluate a 5 

x 5 determinant as a sum of 4 x 4 deter-
minants then get 4 x 4’s in terms of 3 x 3’s 
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Determinant Behavior
• A determinant is zero if any row or any 

column contains all zeros.

• If one row or one column of a 
determinant is multiplied by a constant, 
k, the value of the determinant is 
multiplied by the same constant.
– Note the implication for matrices: if a matrix 

is multiplied by a constant, k, then each 
matrix element is multiplied by k.  If A is an 
n x n matrix, Det(kA) = knDet(A).
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Determinant Behavior II
• If one row (or one column) of a 

determinant is replaced by a linear 
combination of that row (or column) with 
another row (or column), the value of 
the determinant is not changed. 

• If two rows (or two columns) of a 
determinant are linearly dependent  the 
value of the determinant is zero.
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Determinant Behavior III
• The determinant of the product of two 

matrices, A and B is the product of the 
determinants of the individual matrices: 
Det(AB) = Det(A) Det(B).

• The determinant of transposed matrix is 
the same as the determinant of the 
original matrix: Det(AT) = Det(A).
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Example of General Rule
• Get determinant of a 3 x 3 matrix by 

expansion along last row
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Example of General Rule II
• Get determinant of a 3 x 3 matrix
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Inverse of a Matrix
• For a square matrix, A, an inverse matrix, 

A-1 may exist such that AA-1 = A-1A = I
• For the algebraic equation ax = b, x = a-1b
• For the matrix equation Ax = b, x = A-1b
• Just as x = a-1b is not valid if a = 0, x =    

A-1b is not valid if A-1 does not exist
– A-1 does not exist if DetA = 0

• The inverse is an important concept in 
analysis of linear systems, but is not used 
in computational work
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Formula for Inverse of a Matrix

• Find the components of B = A-1, bij, from 
determinant of A and its cofactors
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AB

Det

M

Det

C
bIf jijiji

ij
 

• Use to get algebraic equations for 
components of inverse matrix

• Matrix computations, if necessary, obtain 
components by alternative numerical 
algorithms – more next two weeks
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Inverse of 2 x 2 Matrix
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Inverse of 3 x 3 Matrix
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Example Problem

• Find A-1 for A at right
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• General determinant formula: aijCij

• Take sum over third row to simplify 
calculation of Det A
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Example Problem Det A

• Det A = (-1)3+1a31M31 +   (-1)3+2a32M32+ 
(-1)3+3a33M33 + (-1)3+4a34M34





















1320

0001

0012

1201

A
000

132

001

120

)1()1( 13  ADet

1
)0)(3)(0()1)(2)(1()1)(0)(2(

)0)(2)(2()1)(3)(1()1)(0)(0(

132

001

120





ADet



Inverse Matrices, and Determinants August 30, 2017

ME 501A – Seminar in Engineering Analysis Page 7

37

Example Problem III
• Apply: bij = (-1)i+jMji/Det A

• Det A = 1 so bij = (-1)i+jMji

– Examples b12, b43 shown below
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Example Problem Solution

• We can show that AA-1 = A-1A = I

• (AA-1)11 = 1·0 + 0·0 + 2·(-1) + 1·3 = 1

• (A-1A)43 = 3·2 + 4·0 + (-11)·0 + (-2)·2 = 0

• Only 14 left to check
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Excel MINVERSE Function
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Original Matrix
Select area for inverse and type 
MINVERSE formula in formula bar

Press Control+ Shift+EnterMINVERSE Result

MINVERSE Result (formula view)


